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Abstract

Based on the complex variable method and the perturbation technique, Green’s functions for the anti-plane prob-

lems in an infinite piezoelectric medium with a crack under remote uniform loadings are derived. The analysis is

conducted on the electrically unified crack boundary condition with the introduction of the electric crack condition

parameter that can describe all the electric crack boundary conditions. The two ideal crack boundary conditions,

namely, the electrically impermeable and permeable crack assumptions are obtained as two special cases for the current

solution. The explicit expressions of the mechanical and electrical fields produced by a line-force, a line-charge and a

screw dislocation are derived and the field intensity factors are calculated. The image forces on the dislocation due to

the crack and the remote uniform loadings are computed as functions of dislocation position and material constant

combinations. Numerical examples are performed to show how the electric crack condition parameter affects the field

intensity factors and the force on the dislocation.
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1. Introduction

Piezoelectric materials have been widely used to diverse areas, such as electromechanical transducers,

electronic packaging, thermal sensors and medical ultrasonic imaging. However, various types of defects

existed in piezoelectric materials, such as dislocations and cracks, can adversely influence the performance
of these piezoelectric devices. The reliability problem emerges and requires a better understanding of the

fracture behavior of these materials. A lot of theoretical results have been presented in the literatures. Deeg

(1980) analyzed the dislocation, crack, and inclusion problems in piezoelectric solids. He assumed that the

electric is impermeable across the crack and ignores the electric field within the crack. This is the so-called
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electrically impermeable crack assumption, which was widely used to investigate the crack problem in

piezoelectric media to simplify analysis, see, for example, the work of Pak (1990a, 1992), Sosa (1991), Wang

(1992), Park and Sun (1995), Qin and Yu (1997), Zhong and Meguid (1997a,b), Qin (2000), Kwon and Lee

(2002). In fact, cracks in the engineering are usually filled with air or vacuum, which means that both the
normal component of electric displacement and the tangential component of the electric field are contin-

uous across the crack faces (Parton, 1976). This is the so-called electrically permeable crack assumption. As

pointed out by McMeeking (1989) and Dunn (1994), the impermeable crack assumption is physically

untenable, and thus will lead to erroneous results, for example, an artificial singularity of electric field solely

in the presence of electric loading. In order to consider the electric inside the crack, Sosa and Khutoryansky

(1996), Zhang and Tong (1996), Zhang et al. (1998, 2002) investigated the crack problem by first solving the

elliptical cavity problem and then reducing the cavity to a crack.

In the paper, we adopt the unified crack boundary condition (Kwon, 2003; Wang and Mai, 2003) that
can describe more reasonable cracks. The obtained results can be degenerated into both the electrically

impermeable and electrically permeable assumptions as special cases. Based on the continuous conditions,

the anti-plane problems of an infinite piezoelectric medium that contains a finite crack subjected to a line-

force, a line-charge and a dislocation near the crack are addressed by means of the complex variable

method and the perturbation technique.
2. Statement of the problem

Let us consider the physical problem as shown in Fig. 1. A screw dislocation is located at a point zd
around a finite crack of length 2a in an infinite piezoelectric medium. The medium is under remote uniform

anti-plane stresses and in-plane electric displacement fields. The dislocation is assumed to be straight and

infinitely long in the z-direction, suffering a finite discontinuity in the displacement and electric potential

across the slip plane. The dislocation has a line-force and a line-charge along its core. The piezoelectric

medium considered here is transversely isotropic with hexagonal symmetry, which has an isotropic basal
plane of xy-plane and a poling direction of z-axis.

In a linear piezoelectric medium, the governing field equations and constitutive relations at constant

temperature can be written as
Fig. 1. A screw dislocation around a finite crack in an infinite piezoelectric medium under remote loadings.
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rij;j ¼ 0; Di;i ¼ 0; ð2:1Þ

rij ¼ cijkluk;l � ekijEk; Di ¼ eikluk;l þ eikEk; ð2:2Þ

where rij, ui, Di and Ei are stress, displacement, electric displacement and electric fields, respectively. cijkl, ekij
and eij are the corresponding elastic, piezoelectric and dielectric constants which satisfy the following

relations:
cijkl ¼ cklij ¼ cijlk ¼ cjikl; ekij ¼ ekji; eik ¼ eki: ð2:3Þ

For the current problem, the displacement w is coupled only with the in-plane electric field Ex and Ey ,

those variables are independent of the longitudinal coordinate z, such that
w ¼ wðx; yÞ; Ex ¼ Exðx; yÞ; Ey ¼ Eyðx; yÞ: ð2:4Þ

The governing field equations and constitutive relations in (2.1) and (2.2) are thus reduced to
orzx

ox
þ orzy

oy
¼ 0;

oDx

ox
þ oDy

oy
¼ 0; ð2:5Þ

rzx ¼ c44
ow
ox

þ e15
ou
ox

; rzy ¼ c44
ow
oy

þ e15
ou
oy

;

Dx ¼ e15
ow
ox

� e11
ou
ox

; Dy ¼ e15
ow
oy

� e11
ou
oy

;

ð2:6Þ
where u ¼ uðx; yÞ is the electric potential and
Ex ¼ � ou
ox

; Ey ¼ � ou
oy

: ð2:7Þ
Substituting (2.6) into (2.5), we have
c44r2wþ e15r2u ¼ 0; e15r2w� e11r2u ¼ 0; ð2:8Þ

where r2 is the two-dimensional Laplacian operator. The above equations can be satisfied if we choose
r2w ¼ 0; r2u ¼ 0: ð2:9Þ

If we let the harmonic functions w and u be the imaginary parts of some complex potentials of the

complex variable z ¼ xþ iy ¼ r eih, or
w ¼ Im½uðzÞ�; u ¼ Im½/ðzÞ�; ð2:10Þ

where ‘‘Im’’ stands for the imaginary part, then the strain and electric fields can be expressed as
czy þ iczx ¼ W ðzÞ; ð2:11Þ

Ey þ iEx ¼ �UðzÞ; ð2:12Þ

while the stress and electric displacement fields can be expressed as
szy þ iszx ¼ c44W ðzÞ þ e15UðzÞ; ð2:13Þ

Dy þ iDx ¼ e15W ðzÞ � e11UðzÞ; ð2:14Þ

where W ðzÞ ¼ u0ðzÞ, UðzÞ ¼ /0ðzÞ, the prime denotes the derivative with respect to the argument z.

The far field boundary conditions are
szxðx;�1Þ ¼ s1zx ; szyðx;�1Þ ¼ s1zy ; ð2:15Þ
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Dxðx;�1Þ ¼ D1
x ; Dyðx;�1Þ ¼ D1

y ; ð2:16Þ
where s1zx , s
1
zy , D

1
x and D1

y are uniform shear stress and electric displacement field respectively, as shown in

Fig. 1.

The mechanical boundary conditions at the crack surface are
szyðxÞþ ¼ szyðxÞ� ¼ 0; jxj < a; ð2:17Þ

wðxÞþ ¼ wðxÞ�; jxjP a; ð2:18Þ

where the superscript ‘‘+’’ and ‘‘)’’ refer, respectively, to the upper and lower crack surfaces.

The electric boundary conditions at the crack surface are
EyðxÞþ ¼ EyðxÞ� ¼ CrE0ðxÞ; jxj < a; ð2:19Þ

uðxÞþ ¼ uðxÞ�; jxjP a; ð2:20Þ
where E0ðxÞ is the boundary value of EyðzÞ on the crack faces due to the dislocation and the far field loading

without the disturbance of the crack. Cr is referred to the electric crack condition parameter. Eqs. (2.19) and

(2.20) are referred to electrically unified crack boundary condition hereafter (Wang and Mai, 2003; Kwon,

2003). The solutions based on this condition will correctly recover both the impermeable and permeable

crack solutions as limiting cases.
3. Solution of the problem

We assume that a screw dislocation with Burgers vector bz, a line-force p, a line-charge q, and an electric

potential jump bu, are located at a point zd near the crack under remotely uniform loadings (Fig. 1), Based

on the perturbation technique, the corresponding complex potentials W ðzÞ and UðzÞ can be written as
W ðzÞ ¼ W0ðzÞ þ W1ðzÞ; ð3:1Þ

UðzÞ ¼ U0ðzÞ þ U1ðzÞ; ð3:2Þ

where W1ðzÞ and U1ðzÞ are the analytical functions corresponding the perturbed field due to the existing of

the crack; W0ðzÞ and U0ðzÞ are associated with the unperturbed fields without the crack, they can be written

as
W0ðzÞ ¼ ðA1 þ iA2Þ þ ðA3 þ iA4Þ=ðz� zdÞ; ð3:3Þ

U0ðzÞ ¼ ðB1 þ iB2Þ þ ðB3 þ iB4Þ=ðz� zdÞ: ð3:4Þ
The A1, A2, A3, A4, B1, B2, B3 and B4 in the above equations are constants to be determined by the char-
acteristics of dislocation and the far field conditions. The remotely uniform loadings requires that
szy þ iszx ¼ c44W0ðz ! 1Þ þ e15U0ðz ! 1Þ; ð3:5Þ

Dy þ iDx ¼ e15W0ðz ! 1Þ � e11U0ðz ! 1Þ: ð3:6Þ
The force and charge balances require that
I
C
szjnj dl ¼ �p;

I
C
Djnj dl ¼ q: ð3:7Þ
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For any Burgers circuit enclosing only the dislocation, we obtain
I
C

ow
ol

dl ¼ bz;
I
C

ou
ol

dl ¼ bu: ð3:8Þ
The substitution of (2.10) into (3.5) and (3.6) results in
A1 ¼
s1zy þ e15E1

y

c44
; A2 ¼

s1zx þ e15E1
x

c44
; ð3:9aÞ

B1 ¼ �E1
y ; B2 ¼ �E1

x ; ð3:10aÞ
for Case a: sðx;�1Þ ¼ s1zy þ is1zx and Eðx;�1Þ ¼ E1
y þ iE1

x , and
A1 ¼
e11s1zy þ e15D1

y

c44e11 þ e215
; A2 ¼

e11s1zx þ e15D1
x

c44e11 þ e215
; ð3:9bÞ

B1 ¼
e15s1zy � c44D1

y

c44e11 þ e215
; B2 ¼

e15s1zx � c44D1
x

c44e11 þ e215
; ð3:10bÞ
for Case b: sðx;�1Þ ¼ s1zy þ is1zx and Dðx;�1Þ ¼ D1
y þ iD1

x , and
A1 ¼ c1zy ; A2 ¼ c1zx ; ð3:9cÞ

B1 ¼ �E1
y ; B2 ¼ �E1

x ; ð3:10cÞ
for Case c: cðx;�1Þ ¼ c1zy þ ic1zx and Eðx;�1Þ ¼ E1
y þ iE1

x , and
A1 ¼ c1zy ; A2 ¼ c1zx ; ð3:9dÞ

B1 ¼
e15c1zy � D1

y

e11
; B2 ¼

e15c1zx � D1
x

e11
; ð3:10dÞ
for Case d: cðx;�1Þ ¼ c1zy þ ic1zx and Dðx;�1Þ ¼ D1
y þ iD1

x . The substitution of (2.10) into (3.7) and (3.8)

results in
A3 ¼
bz
2p

; A4 ¼
1

2p
e15q� e11p
c44e11 þ e215

; ð3:11Þ

B3 ¼
bu
2p

; B4 ¼ � 1

2p
c44qþ e15p
c44e11 þ e215

: ð3:12Þ
With reference to (2.13), the condition (2.17) yields
c44½W ðxÞþ þ W ðxÞ�� þ e15½UðxÞþ þ UðxÞ�� ¼ 0; jxj < a ð3:13Þ

and
c44½W ðxÞ� þ W ðxÞþ� þ e15½UðxÞ� þ UðxÞþ� ¼ 0; jxj < a ð3:14Þ

where the over-bar denotes conjugate. The subtraction and addition of Eqs. (3.13) and (3.14), respectively,

give
c44f½W ðxÞ � W ðxÞ�þ � ½W ðxÞ � W ðxÞ��g þ e15f½UðxÞ � UðxÞ�þ � ½UðxÞ � UðxÞ��g ¼ 0; jxj < a

ð3:15Þ
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and
c44f½W ðxÞ þ W ðxÞ�þ þ ½W ðxÞ þ W ðxÞ��g þ e15f½UðxÞ þ UðxÞ�þ þ ½UðxÞ þ UðxÞ��g ¼ 0; jxj < a

ð3:16Þ
Substituting (3.1) and (3.2) into (3.15) and (3.16), we obtain
c44f½W1ðxÞ � W 1ðxÞ�þ � ½W1ðxÞ � W 1ðxÞ��g þ e15f½U1ðxÞ � U1ðxÞ�þ � ½U1ðxÞ � U1ðxÞ��g ¼ 0; jxj < a

ð3:17Þ
and
c44f½W1ðxÞ þ W 1ðxÞ�þ þ ½W1ðxÞ þ W 1ðxÞ��g þ e15f½U1ðxÞ þ U1ðxÞ�þ þ ½U1ðxÞ þ U1ðxÞ��g ¼ �2F0ðxÞ;
ð3:18Þ
where
F0ðxÞ ¼ c44½2A1 þ ðA3 þ iA4Þ=ðx� zdÞ þ ðA3 � iA4Þ=ðx� �zdÞ�
þ e15½2B1 þ ðB3 þ iB4Þ=ðx� zdÞ þ ðB3 � iB4Þ=ðx� �zdÞ�: ð3:19Þ
The solution for (3.17) and (3.18) can be written as (Muskhelishvili, 1975):
c44W1ðzÞ þ e15U1ðzÞ ¼ �c44FwðzÞ � e15FuðzÞ; ð3:20Þ
where
FwðzÞ ¼ A1 þ
A3 þ iA4

2ðz� zdÞ
þ A3 � iA4

2ðz� �zdÞ
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p A1z

2
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2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
z� zd
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2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
z� �zd

0
@ þ 1

1
A
3
5; ð3:21Þ
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2ðz� zdÞ
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2ðz� �zdÞ
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p B1z

2
4 þ B3 þ iB4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d � a2

p
z� zd
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!

þ B3 � iB4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2d � a2

p
z� �zd

0
@ þ 1

1
A
3
5: ð3:22Þ
In a similar way, the condition (2.19) yields
U1ðzÞ ¼ ðCr � 1ÞFuðzÞ: ð3:23Þ
The substitution of (3.23) into (3.20) arrives at
W1ðzÞ ¼ �FwðzÞ � Cr
e15
c44

FuðzÞ: ð3:24Þ
It is noted that the above solutions automatically satisfy the conditions (2.18) and (2.20).

The solutions expressed in (3.23) and (3.24) correctly recover both the impermeable and permeable crack
solutions as limiting cases. For electrically impermeable crack assumption, the crack is electrically insu-

lating, such that D0 ¼ 0. This is obtained by letting Cr ¼ 0. The solution is then derived as
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W1ðzÞ
U1ðzÞ

� �
¼ � FwðzÞ

FuðzÞ

� �
: ð3:25Þ
For electrically permeable crack assumption, the crack is electrically conducting. There is no electric po-
tential discontinuity across the crack. This condition is fulfilled by letting Cr ¼ 1. The solution is then

written as
W1ðzÞ
U1ðzÞ

� �
¼ � FwðzÞ þ

e15
c44

FuðzÞ
0

( )
: ð3:26Þ
Any possible electric crack condition is therefore unified into the parameter Cr. The solutions expressed in

(3.25) and (3.26) represent, respectively, the solutions for the ideal electrically insulating crack and the ideal

electrically conducting crack. They are two special cases for the electrical boundary conditions on the crack

faces.
It should be noted that in the case of an elliptical flaw with a and b its major and minor axes, respec-

tively, Cr can be associated with two parameters of the flaw, a ¼ b=a and e0, the dielectric permittivity of the

flaw medium as (Zhang and Tong, 1996)
Cr ¼
1þ a

1þ a=b
; b ¼ e0

ee
; ee ¼ e11 þ

e215
c44

: ð3:27Þ
4. Mechanical and electrical fields

The strain and electric fields can be calculated by using (2.11) and (2.12) together with (3.1) and (3.2),

which can be written as
czy þ iczx ¼ ðc0zy þ ic0zxÞ þ ðc1zy þ ic1zxÞ; ð4:1Þ

Ey þ iEx ¼ ðE0
y þ iE0

xÞ þ ðE1
y þ iE1

xÞ; ð4:2Þ
and the stress and electric displacement fields are calculated by
szy þ iszx ¼ ðs0zy þ is0zxÞ þ ðs1zy þ is1zxÞ; ð4:3Þ

Dy þ iDx ¼ ðD0
y þ iD0

xÞ þ ðD1
y þ iD1

xÞ; ð4:4Þ
where the variables with the superscript ‘‘0’’ are the unperturbed fields which are associated with W0ðzÞ and
U0ðzÞ as expressed, respectively, in Eqs. (3.3) and (3.4), and those with the superscript ‘‘1’’ are the perturbed

fields which are associated with W1ðzÞ and U1ðzÞ as expressed, respectively, in Eqs. (3.23) and (3.24). The

unperturbed fields are given by
c0zy þ ic0zx ¼ ðA1 þ iA2Þ þ ðA3 þ iA4Þ=ðz� zdÞ; ð4:5Þ

E0
y þ iE0

x ¼ �ðB1 þ iB2Þ � ðB3 þ iB4Þ=ðz� zdÞ; ð4:6Þ

s0zy þ is0zx ¼ c44ðc0zy þ ic0zxÞ � e15ðE0
y þ iE0

xÞ; ð4:7Þ

D0
y þ iD0

x ¼ e15ðc0zy þ ic0zxÞ þ e11ðE0
y þ iE0

xÞ: ð4:8Þ
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The perturbed fields are given by
c1zy þ ic1zx ¼
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p A1

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p

2
64

8><
>: þ A3 þ iA4

a2 � ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Þðzd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d � a2

p
Þ

þ A3 � iA4

a2 � ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Þð�zd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2d � a2

p
Þ
þ Cr

e15
c44

B1

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p

2
64

þ B3 þ iB4

a2 � ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Þðzd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d � a2

p
Þ
þ B3 � iB4

a2 � ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Þð�zd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2d � a2

p
Þ

3
75
9>=
>;; ð4:9Þ
E1
y þ iE1

x ¼ �ð1� CrÞ
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p B1

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p

2
64 þ B3 þ iB4

a2 � ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Þðzd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d � a2

p
Þ

þ B3 � iB4

a2 � ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Þð�zd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2d � a2

p
Þ

3
75: ð4:10Þ
The related stress and electric displacement fields are then calculated by
s1zy þ is1zx ¼ c44ðc1zy þ ic1zxÞ � e15ðE1
y þ iE1

xÞ; ð4:11Þ
D1
y þ iD1

x ¼ e15ðc1zy þ ic1zxÞ þ e11ðE1
y þ iE1

xÞ: ð4:12Þ
We found from the above Eqs. (4.9) and (4.10) that the remote loadings along the x-axis c1zx , s
1
zx , E

1
x , D1

x

contribute nothing to the perturbed fields.
5. Field intensity factors and the energy release rates

The field intensity factors at the right crack tip are defined as
Kczy þ iKczx ¼ lim
z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðz� aÞ

p
ðczy þ iczxÞ

h i
; ð5:1Þ
KEy þ iKEx ¼ lim
z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðz� aÞ

p
ðEy þ iExÞ

h i
; ð5:2Þ
Kszy þ iKszx ¼ lim
z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðz� aÞ

p
ðszy þ iszxÞ

h i
; ð5:3Þ
KDy þ iKDx ¼ lim
z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðz� aÞ

p
ðDy þ iDxÞ

h i
: ð5:4Þ
Actually, only czy ;Ey ; szy and Dy are singular at the crack tip. The substitution of (4.1)–(4.4) to (5.1)–(5.4)

yields
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Kc ¼ Kczy

¼
ffiffiffiffiffiffi
pa

p
½A1 þ Crðe15=c44ÞB1 � 2C1ðA3=aþ Crðe15=c44ÞB3=aÞ � 2C2ðA4=aþ Crðe15=c44ÞB4=aÞ�; ð5:5Þ

KE ¼ KEy ¼
ffiffiffiffiffiffi
pa

p
ð1� CrÞð�B1 þ 2C1B3=aþ 2C2B4=aÞ; ð5:6Þ

Ks ¼ Kszy ¼
ffiffiffiffiffiffi
pa

p
½c44A1 þ e15B1 � 2C1ðc44A3=aþ e15B3=aÞ � 2C2ðc44A4=aþ e15B4=aÞ�; ð5:7Þ

KD ¼ KDy

¼
ffiffiffiffiffiffi
pa

p
½e15A1 � e11B1 þ Crðe215=c44 þ e11ÞB1 � 2C1ðe15A3=a� e11B3=aþ Crðe215=c44 þ e11ÞB3=aÞ

� 2C2ðe15A4=a� e11B4=aþ Crðe215=c44 þ e11ÞB4=aÞ�; ð5:8Þ
where
C1 ¼
r�1 cos h1 þ

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cosðh1 þ h2Þ=2

r�21 þ r�1r
�
2 þ 2r�1

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cosðh1 � h2Þ=2

; ð5:9Þ

C2 ¼
r�1 sin h1 þ

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
sinðh1 þ h2Þ=2

r�21 þ r�1r
�
2 þ 2r�1

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cosðh1 � h2Þ=2

ð5:10Þ
with
r�1 ¼ r1=a; r�2 ¼ r2=a: ð5:11Þ

Eq. (5.7) indicates that the stress intensity factor Ks is not affected by the electric crack condition parameter

Cr.

The energy release rate G for the crack propagation can be calculated from the path-independent J
integral (Pak, 1990a)
G ¼ J ¼ KcKs � KEKD

2
: ð5:12Þ
6. Image forces on the dislocation

One of the major interests is calculating the image force acting on the dislocation due to the existing of

the crack and the remote uniform loadings. The forces acting on the dislocation is a configuration force,
which relates the change in energy when the dislocation moves an infinitesimal distance. Following Pak

(1990b), the generalized Peach Koehler forces acting on a piezoelectric screw dislocation with a line-force

and a line-charge can be written as
Fx ¼ bzsTzy þ b/DT
y þ pcTzx þ qET

x ; ð6:1Þ

Fy ¼ �bzsTzx � b/DT
x þ pcTzy þ qET

y ; ð6:2Þ
where the variables rT
zy , r

T
zx, D

T
y , D

T
x , c

T
zy , c

T
zx, E

T
y and ET

x are calculated from Eqs. (4.9), (4.10), (4.11) and

(4.12) by taking z ¼ zd . The detail expressions are given by
cTzy ¼ d1½A1 þ Crðe15=c44ÞB1� þ ðd3 þ d5Þ½A3=aþ Crðe15=c44ÞB3=a�
þ ðd4 � d6Þ½A4=aþ Crðe15=c44ÞB4=a�; ð6:3Þ
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cTzx ¼ �d2½A1 þ Crðe15=c44ÞB1� � ðd4 þ d6Þ½A3=aþ Crðe15=c44ÞB3=a�
þ ðd3 � d5Þ½A4=aþ Crðe15=c44ÞB4=a�; ð6:4Þ
ET
y ¼ ð1� CrÞ½�d1B1 � ðd3 þ d5ÞB3=a� ðd4 � d6ÞB4=a�; ð6:5Þ
ET
x ¼ ð1� CrÞ½d2B1 þ ðd4 þ d6ÞB3=a� ðd3 � d5ÞB4=a�; ð6:6Þ
sTzy ¼ d1ðc44A1 þ e15B1Þ þ ðd3 þ d5Þðc44A3=aþ e15B3=aÞ þ ðd4 � d6Þðc44A4=aþ e15B4=aÞ; ð6:7Þ
sTzx ¼ �d2ðc44A1 þ e15B1Þ � ðd4 þ d6Þðc44A3=aþ e15B3=aÞ þ ðd3 � d5Þðc44A4=aþ e15B4=aÞ; ð6:8Þ
DT
y ¼ d1ðe15A1 � e11B1 þ Crðe215=c44 þ e11ÞB1Þ þ ðd3 þ d5Þðe15A3=a� e11B3=aþ Crðe215=c44 þ e11ÞB3=aÞ

þ ðd4 � d6Þðe15A4=a� e11B4=aþ Crðe215=c44 þ e11ÞB4=aÞ; ð6:9Þ
DT
x ¼ �d2ðe15A1 � e11B1 þ Crðe215=c44 þ e11ÞB1Þ � ðd4 þ d6Þðe15A3=a� e11B3=aþ Crðe215=c44 þ e11ÞB3=aÞ

þ Crðe215=c44 þ e11ÞB3=aþ ðd3 � d5Þðe15A4=a� e11B4=aþ Crðe215=c44 þ e11ÞB4=a

þ Crðe215=c44 þ e11ÞB4=aÞ: ð6:10Þ
The variables d1, d2, d3, d4, d5 and d6 in the above expressions are
d1 ¼
r�d cos hd þ h1þh2

2

� �
þ

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cosðh1 þ h2Þffiffiffiffiffiffiffiffi
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�
2

p
r�2d þ r�1r

�
2 þ 2r�d

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos hd � h1þh2

2

� �� � ; ð6:11Þ
d2 ¼
r�d sin hd þ h1þh2

2

� �
þ

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
sinðh1 þ h2Þffiffiffiffiffiffiffiffi

r�1r
�
2

p
r�2d þ r�1r

�
2 þ 2r�d

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos hd � h1þh2

2

� �� � ; ð6:12Þ
d3 ¼ �
r�d cosðhd þ h1 þ h2Þ þ

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos 3ðh1þh2Þ

2

2r�1r
�
2 r�2d þ r�1r

�
2 þ 2r�d

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos hd � h1þh2

2

� �� � ; ð6:13Þ
d4 ¼ �
r�d sinðhd þ h1 þ h2Þ þ

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
sin 3ðh1þh2Þ

2

2r�1r
�
2 r�2d þ r�1r

�
2 þ 2r�d

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos hd � h1þh2

2

� �� � ; ð6:14Þ
d5 ¼
cos h1þh2

2

� �
ffiffiffiffiffiffiffiffi
r�1r

�
2

p
1� r�2d � r�1r

�
2 � 2r�d

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos hd � h1þh2

2

� �� � ; ð6:15Þ
d6 ¼
sin h1þh2

2

� �
ffiffiffiffiffiffiffiffi
r�1r

�
2

p
1� r�2d � r�1r

�
2 � 2r�d

ffiffiffiffiffiffiffiffi
r�1r

�
2

p
cos hd � h1þh2

2

� �� � ð6:16Þ
with
r�d ¼ rd=a; ð6:17Þ
where rd in Eq. (6.17) and r1; r2 in Eq. (5.11) are shown in Fig. 1.
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7. Numerical examples and discussions

In this section, numerical examples are performed to show how the electric crack condition parameter Cr

affects the energy release rate and the forces on the dislocation. There are four different remote applied
loadings (c1zy , s

1
zy , E

1
y , D1

y ). To simplify the numerical calculations, only the case when the remote applied

loadings are s1zy , E
1
y (i.e., Case a, in Section 3) is discussed here. As for the dislocation, there are four

different dislocation strength characteristics (bz, bu, p, q) and two dislocation position characteristics (rd ,
hd). To plot the results in normalized forms, we allow the dislocation to have only one none-zero strength

characteristic and the other three are zero in each plotted curve. A PZT-6B material is used in the calcu-

lations, whose material properties are
Fig
c44 ¼ 2:71� 1010 N=m
2
; e15 ¼ 4:6 C=m

2
; e11 ¼ 3:6� 10�9 C=Vm: ð7:1Þ
7.1. The energy release rates

The energy release rate for the crack under remote uniform loadings s1zy , E
1
y can be obtained as
G ¼ 1

2

paðs1zy Þ
2

c44
1

2
4 � ð1� CrÞðc44e11 þ e215Þ

E1
y

s1zy

 !2
3
5: ð7:2Þ
Eqs. (7.2) and (7.3) indicate that, the electric loading always impedes crack propagation for the electrically

impermeable crack Cr ¼ 0 (Pak, 1990a), while, does not affect crack propagation for the electrically per-

meable crack Cr ¼ 1 (McMeeking, 1989; Zhang and Tong, 1996).

The influences of the dislocation on the energy release rates are not straightforward. The electrically

crack condition parameter Cr does not affect G�ðbzÞ, but it has significant influence on G�ðbuÞ, G�ðpÞ and
G�ðqÞ, as shown in Fig. 2, where, as an example, the dislocation is fixed at (rd , hdÞ ¼ ð1:1a; p=10Þ. Fig. 3
illustrates how Cr influences on G�ðbuÞ when rd is fixed at 1:1a, where G�ðbuÞ is depicted varied with the

polar anger of the dislocation hd . The normalizing factors in each curve of the above figures are given
separately by
. 2. The variation in the normalized energy release rate G=G0 with Cr when dislocation is located at ðrd ; hdÞ ¼ ð1:1a; p=10Þ.



Fig. 3. The variation in the normalized energy release rate GðbuÞ=G0ðbuÞ with the polar anger hd when rd ¼ 1:1a.
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G0ðbzÞ ¼
c44b2z
2pa

; G0ðbuÞ ¼
e11b2u
2pa

; G0ðpÞ ¼
p2

2pac44
; G0ðqÞ ¼

q2

2pae11
: ð7:3Þ
For example, G�ðbuÞ in the figures can be expressed as GðbuÞ=G0ðbuÞ, where GðbuÞ is the energy release rate

due to a dislocation with only non-zero strength characteristic bu.
Fig. 3 shows that for Cr ¼ 0 (electrically impermeable assumption) and Cr ¼ 0:3, the electric potential

dislocation bu accelerates the crack propagation. However, for Cr ¼ 0 (an electrically permeable assump-

tion) and Cr ¼ 1:3, the electric potential dislocation bu retards the crack propagation.

7.2. The image forces

As described in Section 6, the image forces on the dislocation due to the existing of the crack and the

remote uniform loadings are calculated in Eqs. (6.1) and (6.2). As a numerical example, we just plot the
image slip force,
Fr ¼ Fx cos hd þ Fy sin hd ; ð7:4Þ
here and the following values for the dislocation characteristics are used:
bz ¼ 1:0� 10�9 m; bu ¼ 1:0 V; p ¼ 10 N=m; q ¼ 1:0� 10�8 C=m: ð7:5Þ
The remote uniform shear stress and the crack sized are assumed to be
s1zy ¼ 1:0� 106 N=m
2
; a ¼ 1:0� 10�6 m: ð7:6Þ
In each plotted curve shown in the following, the dislocation has only one none-zero strength characteristic.

The normalizing factors in each curve are given separately by
F0ðbzÞ ¼
c44b2z
4pa

; F0ðbuÞ ¼
e11b2u
4pa

; F0ðpÞ ¼
p2

4pac44
; F0ðqÞ ¼

q2

4pae11
: ð7:7Þ
Fig. 4 plots the variations in the normalized image slip force Fr=F0 with the electric crack condi-
tion parameter Cr when the dislocation is fixed at ðrd ; hdÞ ¼ ð1:1a; p=6Þ and E1

y ¼ �2:0� 105 V/m.



Fig. 4. The variation in the normalized image slip force Fr=F0 with Cr when dislocation is located at ðrd ; hdÞ ¼ ð1:1a; p=6Þ under remote

uniform shear stress and electric field.
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Fig. 4 shows that under such remote loadings, increasing Cr results in increasing FrðbuÞ, but decreas-

ing FrðpÞ and FrðqÞ. Fig. 4 also shows that the electric crack condition parameter does not affect

FrðbzÞ.
Figs. 5–7 plot the variations of FrðbuÞ, FrðpÞ and FrðqÞ, respectively, with the polar anger of the dislo-

cation hd under four different electric crack condition parameter Cr. The remote electric field is fixed at

E1
y ¼ �2:0� 105 V/m. Fig. 5 shows that in the case that the electric potential dislocation bu is initiated near

the real axis (hd is small), the crack will repel it in the radial direction when Cr ¼ 0 or Cr ¼ 0:3; while attract
Fig. 5. The variation in the normalized image slip force Fr=F0 due to bu with the polar anger hd when rd ¼ 1:1a under remote uniform

shear stress and electric field.



Fig. 6. The variation in the normalized image slip force Fr=F0 due to line-force p with the polar anger hd when rd ¼ 1:1a under remote

uniform shear stress and electric field.

Fig. 7. The variation in the normalized image slip force Fr=F0 due to line-charge q with the polar anger hd when rd ¼ 1:1a under remote

uniform shear stress and electric field.
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when Cr ¼ 1 or Cr ¼ 1:3. As for the line-force p, the crack always attracts it in the radial direction despite of
the value of Cr, as shown in Fig. 6. However, the crack repels the line-charge q when Cr ¼ 0 or Cr ¼ 0:3;
attracts it when Cr ¼ 1:3; but does not affect it when Cr ¼ 1.

In the previous discussion, the remote electric field is fixed at a negative value. In order to examine the

influence from the remote electric field, Figs. 8 and 9 plot the variation of the normalized FrðbuÞ with the

polar anger of the dislocation hd for Cr ¼ 0:6 and Cr ¼ 1:3, respectively. It is noted that positive remote

electric field enhances the magnitudes of the force on the dislocation bu.



Fig. 8. The variation in the normalized image slip force Fr=F0 due to bu with the polar anger hd when rd ¼ 1:1a and Cr ¼ 0:6.

Fig. 9. The variation in the normalized image slip force Fr=F0 due to bu with the polar anger hd when rd ¼ 1:1a and Cr ¼ 1:3.

B.J. Chen et al. / International Journal of Solids and Structures 41 (2004) 5285–5300 5299
8. Conclusions

The electro-elastic interaction of a piezoelectric screw dislocation, a line-force, and a line-charge near a

finite crack in a piezoelectric medium is considered. The analysis is conducted on the electrically unified

crack boundary condition with the introduction of the electric crack condition parameter that can describe

all the electric crack boundary conditions. The explicit expressions of the mechanical and electrical fields

produced by a line-force, a line-charge and a screw dislocation are derived and the field intensity factors are

calculated. The image forces on the dislocation due to the crack and the remote uniform loadings are also
calculated. The solution can be served as Green’s functions for studying crack propagation problems in
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piezoelectric media. The two ideal crack boundary conditions, namely, the electrically impermeable and

permeable crack assumptions are obtained as two special cases for the current solution. Numerical

examples are performed to show how the electric crack condition parameter affects the field intensity

factors and the force on the dislocation.
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