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Abstract

Based on the complex variable method and the perturbation technique, Green’s functions for the anti-plane prob-
lems in an infinite piezoelectric medium with a crack under remote uniform loadings are derived. The analysis is
conducted on the electrically unified crack boundary condition with the introduction of the electric crack condition
parameter that can describe all the electric crack boundary conditions. The two ideal crack boundary conditions,
namely, the electrically impermeable and permeable crack assumptions are obtained as two special cases for the current
solution. The explicit expressions of the mechanical and electrical fields produced by a line-force, a line-charge and a
screw dislocation are derived and the field intensity factors are calculated. The image forces on the dislocation due to
the crack and the remote uniform loadings are computed as functions of dislocation position and material constant
combinations. Numerical examples are performed to show how the electric crack condition parameter affects the field
intensity factors and the force on the dislocation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have been widely used to diverse areas, such as electromechanical transducers,
electronic packaging, thermal sensors and medical ultrasonic imaging. However, various types of defects
existed in piezoelectric materials, such as dislocations and cracks, can adversely influence the performance
of these piezoelectric devices. The reliability problem emerges and requires a better understanding of the
fracture behavior of these materials. A lot of theoretical results have been presented in the literatures. Deeg
(1980) analyzed the dislocation, crack, and inclusion problems in piezoelectric solids. He assumed that the
electric is impermeable across the crack and ignores the electric field within the crack. This is the so-called
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electrically impermeable crack assumption, which was widely used to investigate the crack problem in
piezoelectric media to simplify analysis, see, for example, the work of Pak (1990a, 1992), Sosa (1991), Wang
(1992), Park and Sun (1995), Qin and Yu (1997), Zhong and Meguid (1997a,b), Qin (2000), Kwon and Lee
(2002). In fact, cracks in the engineering are usually filled with air or vacuum, which means that both the
normal component of electric displacement and the tangential component of the electric field are contin-
uous across the crack faces (Parton, 1976). This is the so-called electrically permeable crack assumption. As
pointed out by McMeeking (1989) and Dunn (1994), the impermeable crack assumption is physically
untenable, and thus will lead to erroneous results, for example, an artificial singularity of electric field solely
in the presence of electric loading. In order to consider the electric inside the crack, Sosa and Khutoryansky
(1996), Zhang and Tong (1996), Zhang et al. (1998, 2002) investigated the crack problem by first solving the
elliptical cavity problem and then reducing the cavity to a crack.

In the paper, we adopt the unified crack boundary condition (Kwon, 2003; Wang and Mai, 2003) that
can describe more reasonable cracks. The obtained results can be degenerated into both the electrically
impermeable and electrically permeable assumptions as special cases. Based on the continuous conditions,
the anti-plane problems of an infinite piezoelectric medium that contains a finite crack subjected to a line-
force, a line-charge and a dislocation near the crack are addressed by means of the complex variable
method and the perturbation technique.

2. Statement of the problem

Let us consider the physical problem as shown in Fig. 1. A screw dislocation is located at a point z,
around a finite crack of length 2« in an infinite piezoelectric medium. The medium is under remote uniform
anti-plane stresses and in-plane electric displacement fields. The dislocation is assumed to be straight and
infinitely long in the z-direction, suffering a finite discontinuity in the displacement and electric potential
across the slip plane. The dislocation has a line-force and a line-charge along its core. The piezoelectric
medium considered here is transversely isotropic with hexagonal symmetry, which has an isotropic basal
plane of xy-plane and a poling direction of z-axis.

In a linear piezoelectric medium, the governing field equations and constitutive relations at constant
temperature can be written as

_>®
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bttt

Fig. 1. A screw dislocation around a finite crack in an infinite piezoelectric medium under remote loadings.
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i, =0, D;; =0, (2.1)

Oij = CijkiUk, — €xijEx, D; = e + eiEy, (2.2)

where o;;, u;, D; and E; are stress, displacement, electric displacement and electric fields, respectively. ¢, ey
and ¢; are the corresponding elastic, piezoelectric and dielectric constants which satisfy the following
relations:

Cijkl = Cklij = Cijik = Cjikl, €kij = Cjiy Eik = Epi- (2-3)

For the current problem, the displacement w is coupled only with the in-plane electric field £, and E,,
those variables are independent of the longitudinal coordinate z, such that

w=w(x,y), E, = E(x,y), E, = E,(x,y). (2.4)
The governing field equations and constitutive relations in (2.1) and (2.2) are thus reduced to
0o, 0o, oD, oD,
a n % _ L 9Dy _

0 2.5
ox Oy ’ ox Oy ’ (2:3)
0 0 0 0
sz—C44—W+€15—(p7 Uzv=C44—W+€15—(P7
Ox Ox ’ dy )% (2.6)
D, =e a_w —¢& 6—(/) D,=e G_W —¢€ 6_(/) -
x = elsE o T g y =1 T A
where ¢ = @(x,y) is the electric potential and
Gl% Gl%
E =—_~ E, =——". 2.
x ax ’ Y ay ( 7)
Substituting (2.6) into (2.5), we have
C44V2W + 615v2§0 = 0, 615V2W — sllvzgo = 07 (28)

where V? is the two-dimensional Laplacian operator. The above equations can be satisfied if we choose
Viw =0, Vip = 0. (2.9)

If we let the harmonic functions w and ¢ be the imaginary parts of some complex potentials of the
complex variable z = x + iy = re', or

w=1Imlu(z)],  ¢=Im[p(z)], (2.10)
where “Im” stands for the imaginary part, then the strain and electric fields can be expressed as

Vo H 1V, = W(z), (2.11)

E,+1iE, = —9(2), (2.12)
while the stress and electric displacement fields can be expressed as

sz + ifzx = C44W(Z) + 615(15(2), (213)

Dy + li = elsW(Z) — 811¢(Z), (214)

where W (z) = u/(z), ¢(z) = ¢'(z), the prime denotes the derivative with respect to the argument z.
The far field boundary conditions are

T (x, £00) = 1 Ty (x, £00) =17, (2.15)

zx)
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D,(x,+t00) = D, D,(x,+00) = D7, (2.16)

where t%, 72, D° and DJ° are uniform shear stress and electric displacement field respectively, as shown in

Fig. 1.
The mechanical boundary conditions at the crack surface are

() =1, =0, <a (2.17)
wx)" =wx), K =>a (2.18)
where the superscript “+”” and “—"" refer, respectively, to the upper and lower crack surfaces.

The electric boundary conditions at the crack surface are

E,(x)" =E,(x)” = CEy(x), x| <a, (2.19)
o) =okx), Kl =a (2.20)

where Ey(x) is the boundary value of E,(z) on the crack faces due to the dislocation and the far field loading
without the disturbance of the crack. C, is referred to the electric crack condition parameter. Egs. (2.19) and
(2.20) are referred to electrically unified crack boundary condition hereafter (Wang and Mai, 2003; Kwon,
2003). The solutions based on this condition will correctly recover both the impermeable and permeable
crack solutions as limiting cases.

3. Solution of the problem

We assume that a screw dislocation with Burgers vector b, a line-force p, a line-charge ¢, and an electric
potential jump b, are located at a point z, near the crack under remotely uniform loadings (Fig. 1), Based
on the perturbation technique, the corresponding complex potentials W (z) and @(z) can be written as

W(z) = Wo(z) + Wi(2), (3.1)
D(z) = Po(z) + D1 (2), (3.2)

where W, (z) and @,(z) are the analytical functions corresponding the perturbed field due to the existing of
the crack; W(z) and @,(z) are associated with the unperturbed fields without the crack, they can be written
as

Wo(z) = (41 +ids) + (43 +1d4) /(z — za), (33)
By(2) = (By +1B2) + (B + iBs)/(z — 24). (3.4)

The A4y, 4,, 43, A4, By, By, B3 and By in the above equations are constants to be determined by the char-
acteristics of dislocation and the far field conditions. The remotely uniform loadings requires that

Tzy + isz = C44VVO(Z — OO) + 615450(2 — OO), (35)
Dy + le = €15VV()(Z — OO) — 811@0(2 — OO) (36)

The force and charge balances require that

frzjnjdl = —p,%Djnjdl =q. (3.7)
c c
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For any Burgers circuit enclosing only the dislocation, we obtain

ow 1)
j£6_ldl_bz’ 7{6_[(11_[)“" (3.8)

The substitution of (2.10) into (3.5) and (3.6) results in

0 00
. sz + elSEv B ‘EZO; + 615E§o

. Ay == DT 3.9a
Cyq ? Cyq ( )

Bl = —E;o, Bz = —E;o7 (3103)

for Case a: t(x, £00) = 13 + ity and E(x, £oo) = E)* +1E°, and

_ eashy o, et tesDy (3.9b)
casely + efs C4q€11 t+ €75
By = T —ewD _ ety —euDy (3.10b)
cas€ry + eis C44811 + €75
for Case b: 1(x, £o0) = 3 + it and D(x, £o0) = D* +1iD}°, and
4=, R (3.9¢)
B = >, By — —E¥, (3.10¢)
for Case c: y(x, +o0) =93 +1ipy and E(x, +o00) = E}¥ +iEY, and
M e (3.9d)
g =S TP ey DY (3.104)

en en

for Case d: y(x, £00) =y + iy% and D(x, £00) = DY° +iD;°. The substitution of (2.10) into (3.7) and (3.8)
results in

A3:§—;, A4:%%, (3.11)
B3:[2)—7‘f’[, B4=—%%. (3.12)
With reference to (2.13), the condition (2.17) yields
culW@) "+ W) | +es[@x) +P(x) =0, |x|<a (3.13)
and
culWx) +Wx) ) +es[@x)” +2(x)1=0, |x|<a (3.14)

where the over-bar denotes conjugate. The subtraction and addition of Egs. (3.13) and (3.14), respectively,
give
ca{ [W(x) =) = (x) =W @)]} +es{[@x) — )] —[@(x) = @(x)] } =0, |x[<a
(3.15)
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and
W @)+ W) + W)+ W]} +es{[@kx) + 2)]" + [@(x) + d(x)] } =0, |x[<a
(3.16)
Substituting (3.1) and (3.2) into (3.15) and (3.16), we obtain

ca{ W (x) =1 (x)]" = (x) = W1(0)] } +es{[®i(x) — 1 (x)]" = [P1(x) — Py (x)] } =0, |x[<a

(3.17)
and
ca () + WL @] + W) + 1))} + eis{[@1(x) + D1(0)]" + [D1(x) + D1 (x)] } = —2F(x),
(3.18)
where
Fo(x) = caa[24) + (A3 +144) [ (x — z4) + (43 — i44) / (x — Z4)]
+e15[2B) + (B3 +1B4)/(x —z4) + (B3 — 1By) [ (x — 24))- (3.19)
The solution for (3.17) and (3.18) can be written as (Muskhelishvili, 1975):
cauWi(z) + e1sPi(z) = —caaF,(z) — e1sF,(z2), (3.20)
where

We—z) 26-2) VE-a

Ay +ids Az —id 1 Ay +1idy [ /22 — a2
Fu(z) = 4, + 3+ 4 A 4 |:A12+ 3+ 4( Zq a+1>

2

+A3_M4(VZ‘2’_“2+1>], (3.21)

£,

B iB B; —iB 1 B iB 2 _ a2
(2) = B, 3+ 1584 316y {3124_ 3+14<\/Zd a+1>

20z—z4) 2(z—24) 22

2 Z*Zd

+B3_iB“(VZ5_“2+1>]. (3.22)

In a similar way, the condition (2.19) yields
®(z) = (C, — 1)F,(2). (3.23)
The substitution of (3.23) into (3.20) arrives at

Wi(z) = —F,(z) — C, 25 F, (2). (3.24)
Ca4
It is noted that the above solutions automatically satisfy the conditions (2.18) and (2.20).
The solutions expressed in (3.23) and (3.24) correctly recover both the impermeable and permeable crack
solutions as limiting cases. For electrically impermeable crack assumption, the crack is electrically insu-
lating, such that Dy, = 0. This is obtained by letting C, = 0. The solution is then derived as
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Wi(z) } { F,(z) }
=— . 3.25
Lo Fy(2) 52
For electrically permeable crack assumption, the crack is electrically conducting. There is no electric po-

tential discontinuity across the crack. This condition is fulfilled by letting C. = 1. The solution is then
written as

W\ Fw(z)—i-?Fq,(z)
{mz)} { 0" } 7

Any possible electric crack condition is therefore unified into the parameter C,. The solutions expressed in
(3.25) and (3.26) represent, respectively, the solutions for the ideal electrically insulating crack and the ideal
electrically conducting crack. They are two special cases for the electrical boundary conditions on the crack
faces.

It should be noted that in the case of an elliptical flaw with a and b its major and minor axes, respec-
tively, C, can be associated with two parameters of the flaw, o = b/a and &, the dielectric permittivity of the
flaw medium as (Zhang and Tong, 1996)

1+ a € el
T _ =y 48 3.27
1+o/p b b=t (3.27)

- b
Ee Ca4

4. Mechanical and electrical fields

The strain and electric fields can be calculated by using (2.11) and (2.12) together with (3.1) and (3.2),
which can be written as

Vo + v = (00, +iv5) + (0L, +17L), (4.1)

E, +iE, = (E) +iE)) + (E, +iE,), (4.2)
and the stress and electric displacement fields are calculated by

Ty +ita = (4, +i1) + (1, +it,), (4.3)

D, +iD, = (D) +iD) + (D} +iDy), (4.4)

where the variables with the superscript “0”” are the unperturbed fields which are associated with W;(z) and
®y(z) as expressed, respectively, in Egs. (3.3) and (3.4), and those with the superscript “1”” are the perturbed
fields which are associated with W (z) and @,(z) as expressed, respectively, in Egs. (3.23) and (3.24). The
unperturbed fields are given by

W, 100 = (A1 +d2) + (4s +ids) /(2 = z), (4.5)
E?,-FlEBZ —(Bl +le) —(Bz+lB4)/(Z—Zd), (46)
0, +it0, = cau (), +1v%) — eis(E) +1EY), (4.7)
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The perturbed fields are given by

a A, n Az + 14,
22— | |z+4VE—-a &P —(z+ V2 —a)(za+ /25— a?)

1 5 O
yzy+lyzx -

; i LT -
@ — V2 )+ B —a)  cul|z4VE—d
+ B; + 1B, n B; — 1B, (4.9)
@ —z+V2-a)(za+ 25 —a?) @ — (z+ V2 —a))(za+ 7z —a?) ’
2 B B; + 1B,
E'+iE' = —(1 - C,) —— L 3
Y ! ( )\/zz—az 24+ V2 —a® @ — (z+ V2 —a*)(za+ /2 — a?)
B; —iB,
+ ) 4.10
@ —(z+V2—ad®)(z+ /25— a?) (4.10)
The related stress and electric displacement fields are then calculated by
T;y + irzlx = 044()/;}, + iyix) - elS(E; + 1Ei), (4.11)
D_i—FiD}C = el5(yzly+iyzlx) +811(Ey1 +iE}). (4.12)

We found from the above Eqgs. (4.9) and (4.10) that the remote loadings along the x-axis y2°, t2°, EX°, DX°
contribute nothing to the perturbed fields.

5. Field intensity factors and the energy release rates
The field intensity factors at the right crack tip are defined as

Ksz + iK‘/'zx = hm|: \% 21-[(2 - a) ('))zy + l’yzr)i| ’ (51)

z—a

Ky, + Ky, = lim[ 2z — a)(E, + iEx)} , (5.2)
Koy +iKe, = lim | /27(z = a)(zz + i), (5.3)
Kp, +iKp, = lim[ 2n(z — a)(D, + li)} . (5.4)

Actually, only v, E,, ., and D, are singular at the crack tip. The substitution of (4.1)~(4.4) to (5.1)(5.4)
yields
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= TCd[Al +Cr(€15/C44)Bl —ZCI(A3/a+C,(el5/c44)B3/a) —2Cz(A4/LZ-|—C,<(€15/C44)B4/a)]7 (55)

KE = KEy = TCa(l — Cr)(—Bl + ZCIB3/CZ + 2C234/a)7 (56)
Kr = Krzy = \/TCCZ[C44A1 + 61531 — 2C1 (c44A3/a + 615B3/a) — 2C2(c44A4/a + 61534/61)], (57)
Kp =Ko,
= /naleisA; — &11B) + Co(els/cas + 11)B1 — 2Ci(e1543/a — &11B3/a + C.(els/cas + €11)B3/a)
— 2C2(€15A4/a — 81134/(1 + Cr(€%5/044 + 811>B4/a)], (58)
where

ricos0; + /rir; cos(0, + 0,)/2
C] = *2 K K * * ok ) (59)
Fi2 4 e 4 2 /rirs cos(0, — 02)/2

¢ __risinfi + /Arsin(0; +0,)/2 10
TR s+ 207 cos(01 - 0)/2 |

with
rn=r/a,  r,=n/a (5.11)

Eq. (5.7) indicates that the stress intensity factor K, is not affected by the electric crack condition parameter
C,.

The energy release rate G for the crack propagation can be calculated from the path-independent J
integral (Pak, 1990a)

KK, — KeK)

G:J:
2

(5.12)

6. Image forces on the dislocation

One of the major interests is calculating the image force acting on the dislocation due to the existing of
the crack and the remote uniform loadings. The forces acting on the dislocation is a configuration force,
which relates the change in energy when the dislocation moves an infinitesimal distance. Following Pak
(1990b), the generalized Peach Koehler forces acting on a piezoelectric screw dislocation with a line-force
and a line-charge can be written as

F, = b1} + byD] + pyl. + qE} (6.1)
Fy = —b.2l, — b, + T, + gET, (62)
where the variables ¢}, 1, D}, D{, 7, 7}, E] and E] are calculated from Egs. (4.9), (4.10), (4.11) and

(4.12) by taking z = z,. The detail expressions are given by
VzTy =d\[41 + C.(e1s/caa)B1] + (ds + ds)[A3/a + C.(e1s/cas) B3/ a]
+ (d4 - d())[A4/LZ + C,~(€15/C44)B4/CI]7 (63)
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7 = —d A1 + C.(e15/cas)B1] — (ds + ds)[A3/a + C.(e15/cas)B3/al

+ (ds — ds)[As/a + C,(es/cas)Ba/al, (6.4)
E' = (1 - C)[~diB) — (ds + ds)Bs/a — (dy — ds)B4/d], (6.5)
ET = (1= C,)[dsB, + (ds + dg)B3/a — (ds — ds)Bs /], (6.6)
1), = di(casdy + eisBr) + (ds + ds)(caads/a + eisBs/a) + (du — ds)(casda/a + e1sBs/a), (6.7)
1l = —dy(casd) + e1sB1) — (ds + ds)(casds/a + eisBs/a) + (ds — ds)(cuds/a + e1sBy/a), (6.8)

DyT =d(e1s41 — enBy + Cr(ef5/644 +e11)B1) + (ds + ds)(e1sds/a — e B3 Ja + Cr(€%5/044 + ¢11)B3/a)
—+ (d4 — dé)(e15A4/a — 81134/(1 + C,(e%s/c44 + 811)34/61), (69)

DI = —dy(e154; — en By + C,(els/cas + e11)B1) — (dy + ds)(e1s43/a — &11B3/a + C.(els/cas + €11)B3/a)
+ C.(efs/caa + en)Bs/a + (ds — ds)(e1sAs/a — &11Bs/a + C.(els/cas + €11)Ba/a
+ C,(e%5/044 + 811)34/61). (610)
The variables d, d>, ds, ds, ds and dg in the above expressions are
7’5 cOS (Od + @) + \/rirs cos(0) + 02)

d:
L rn [+ e+ 2/ cos (0 — 2E2)]

(6.11)

g rysin (0, + 252 + \ /ri7; sin(0; + 0,) 612
2= H ook [ k2 K 1k * K K _ 0140y ’ ( : )
/7T [rd + i} + 215\ /¥ir; cos (Qd == )]

g ricos(0y + 01 + 0y) + \/ri73 cos 2% (6.13)
TR+ rirs + 2o (0~ 155)] |
o risin(0+ 01 + ) + /7 sin 103 (6.14)
‘T 21 [ri? 4 1y + 265 /rirs cos (04 — —0‘;62 )] 7 '
0140,
cos (42
i ) (6.15)

Vi1 = = rirs = 2r\/rirs cos (04 — 0‘;—62)] ’

o N [1 — i — s = 2r5\/rir; cos (Gd — O‘ZLOZ)] )

with
¥ =rafa, (6.17)
where r; in Eq. (6.17) and ry,r, in Eq. (5.11) are shown in Fig. 1.
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7. Numerical examples and discussions

In this section, numerical examples are performed to show how the electric crack condition parameter C,
affects the energy release rate and the forces on the dislocation. There are four different remote applied
loadings (3, =y, £)°, D)°). To simplify the numerical calculations, only the case when the remote applied
loadings are o, EX (i.e., Case a, in Section 3) is discussed here. As for the dislocation, there are four
different dislocation strength characteristics (b., b,, p, ¢) and two dislocation position characteristics (r,,
0,). To plot the results in normalized forms, we allow the dislocation to have only one none-zero strength
characteristic and the other three are zero in each plotted curve. A PZT-6B material is used in the calcu-

lations, whose material properties are

ey =271 x 10° N/m®,  e;5=4.6 C/m°, &, =36x10" C/Vm. (7.1)

7.1. The energy release rates

The energy release rate for the crack under remote uniform loadings 727, E)° can be obtained as
1 na(rfj)z
2

> 2
G= 1-— (1 — C,)(C44811 + 6%5) (_y) . (72)

Ca4 TZO;

Egs. (7.2) and (7.3) indicate that, the electric loading always impedes crack propagation for the electrically
impermeable crack C, = 0 (Pak, 1990a), while, does not affect crack propagation for the electrically per-
meable crack C, = 1 (McMeeking, 1989; Zhang and Tong, 1996).

The influences of the dislocation on the energy release rates are not straightforward. The electrically
crack condition parameter C, does not affect G*(b,), but it has significant influence on G*(b,,), G*(p) and
G*(g), as shown in Fig. 2, where, as an example, the dislocation is fixed at (r4, 0,) = (1.1a,/10). Fig. 3
illustrates how C, influences on G*(b,) when r, is fixed at 1.1a, where G*(b,)) is depicted varied with the
polar anger of the dislocation 6,. The normalizing factors in each curve of the above figures are given
separately by

[} 05 1 1.6 2

Fig. 2. The variation in the normalized energy release rate G/G, with C, when dislocation is located at (r4,60,) = (1.1a,n/10).
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2
1]
o JCozrs-ti e
—-.l-‘-.—-.
. Ry C g :3"
G (b;v) 1 _M':‘?ﬁ
-2 ”d/a:l'l
. e
A . ——— ‘ o B
0 0.1 - N )

6, (radian)

Fig. 3. The variation in the normalized energy release rate G(b,,)/Go(b,) with the polar anger 0, when r, = 1.1a.

2 2 2 2
o C44bz _ Sllb(p P q

Go(b,) = g’ Go(p) Go(q)

Gy(b, = 3
o(2) Ta 2TaAC

(7.3)

2na’  2magy

For example, G*(b,,) in the figures can be expressed as G(b,,)/Go(b,), where G(b,,) is the energy release rate
due to a dislocation with only non-zero strength characteristic b,,.

Fig. 3 shows that for C. = 0 (electrically impermeable assumption) and C. = 0.3, the electric potential
dislocation b, accelerates the crack propagation. However, for C, = 0 (an electrically permeable assump-
tion) and C, = 1.3, the electric potential dislocation b, retards the crack propagation.

7.2. The image forces

As described in Section 6, the image forces on the dislocation due to the existing of the crack and the
remote uniform loadings are calculated in Egs. (6.1) and (6.2). As a numerical example, we just plot the
image slip force,

F, = F.cos0,; + F,sin 0y, (7.4)
here and the following values for the dislocation characteristics are used:

b.=1.0x10" m, b,=10V, p =10 N/m, g=10x10"* C/m. (7.5)
The remote uniform shear stress and the crack sized are assumed to be

2 =10x10°N/m’, a=10x10"m. (7.6)

In each plotted curve shown in the following, the dislocation has only one none-zero strength characteristic.
The normalizing factors in each curve are given separately by

&1l bi P q*

_ cubs _ Ap) Fq) =
" dma’ 0 o\d " dmaey;

Fy(b:)

Foy(b,) (7.7)

4na’ dnacy,’

Fig. 4 plots the variations in the normalized image slip force F,./F, with the electric crack condi-
tion parameter C, when the dislocation is fixed at (ry4,0s) = (1.1a,1/6) and E}* = —2.0 x 10> V/m.



B.J. Chen et al. | International Journal of Solids and Structures 41 (2004) 5285-5300 5297

2

2 r,Ja=1.1,6, =xz/10
E; =-2x10°V/m

o 05 1 1.5 2

C

r

Fig. 4. The variation in the normalized image slip force F,./F, with C, when dislocation is located at (r4,0,) = (1.1a,/6) under remote
uniform shear stress and electric field.

Fig. 4 shows that under such remote loadings, increasing C, results in increasing F.(b,), but decreas-
ing F.(p) and F.(q). Fig. 4 also shows that the electric crack condition parameter does not affect
E(b.).

Figs. 5-7 plot the variations of F,(b,), F.(p) and F,.(q), respectively, with the polar anger of the dislo-
cation 0, under four different electric crack condition parameter C,.. The remote electric field is fixed at
Ey = —2.0 x 10° V/m. Fig. 5 shows that in the case that the electric potential dislocation b,, is initiated near
the real axis (0, is small), the crack will repel it in the radial direction when C, = 0 or C, = 0.3; while attract

rla=1.1
E7 =-2x10"¥/m

F;(b,)

o o1 0z 03 0.4

@, (radian)

Fig. 5. The variation in the normalized image slip force F./F, due to b, with the polar anger 0, when r, = 1.1a under remote uniform
shear stress and electric field.
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25, 0.1 0.2 03 0.4
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Fig. 6. The variation in the normalized image slip force F,/F, due to line-force p with the polar anger 0, when r, = 1.1a under remote
uniform shear stress and electric field.
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Fig. 7. The variation in the normalized image slip force F,/Fy due to line-charge ¢ with the polar anger 6, when r, = 1.1a under remote
uniform shear stress and electric field.

when C, = 1 or C, = 1.3. As for the line-force p, the crack always attracts it in the radial direction despite of
the value of C,, as shown in Fig. 6. However, the crack repels the line-charge ¢ when C, =0 or C, = 0.3;
attracts it when C, = 1.3; but does not affect it when C, = 1.

In the previous discussion, the remote electric field is fixed at a negative value. In order to examine the
influence from the remote electric field, Figs. 8 and 9 plot the variation of the normalized F,(b,) with the
polar anger of the dislocation 8, for C, = 0.6 and C, = 1.3, respectively. It is noted that positive remote
electric field enhances the magnitudes of the force on the dislocation b,,.
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Fig. 8. The variation in the normalized image slip force F./F, due to b, with the polar anger 0, when r, = 1.1a and C, = 0.6.
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Fig. 9. The variation in the normalized image slip force F,./F, due to b, with the polar anger 0, when r, = 1.1a and C, = 1.3.

8. Conclusions

The electro-elastic interaction of a piezoelectric screw dislocation, a line-force, and a line-charge near a
finite crack in a piezoelectric medium is considered. The analysis is conducted on the electrically unified
crack boundary condition with the introduction of the electric crack condition parameter that can describe
all the electric crack boundary conditions. The explicit expressions of the mechanical and electrical fields
produced by a line-force, a line-charge and a screw dislocation are derived and the field intensity factors are
calculated. The image forces on the dislocation due to the crack and the remote uniform loadings are also
calculated. The solution can be served as Green’s functions for studying crack propagation problems in
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piezoelectric media. The two ideal crack boundary conditions, namely, the electrically impermeable and
permeable crack assumptions are obtained as two special cases for the current solution. Numerical
examples are performed to show how the electric crack condition parameter affects the field intensity
factors and the force on the dislocation.
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